ИННОВАЦИОННЫЕ ЭНЕРГЕТИЧЕСКИЕ ТЕХНОЛОГИИ


Человечество ищет ответы на глобальные вопросы:

– что делать в связи с изменением климата и глобальным потеплением;

– где найти энергоресурсы, которые распределены крайне неравномерно и истощаются;

– как сохранить стабильность в мире и обеспечить устойчивое развитие при наличии рисков, связанных с изменением климата и недостатком энергоресурсов;

– как обеспечить энергетическую безопасность каждой страны и глобальную безопасность.

Ответы на эти глобальные вопросы могут быть получены в результате реализации новой энергетической стратегии. Основные направления будущего развития энергетики:

1. Переход от энергетики, основанной на ископаемом топливе, к бестопливной энергетике с использованием возобновляемых источников энергии.

2. Переход на распределённое производство энергии, совмещённое с локальными потребителями энергии.

3. Создание глобальной солнечной энергетической системы.

4. Замена нефтепродуктов и природного газа на жидкое и газообразное биотопливо, а ископаемого твёрдого топлива - на использование энергетических плантаций биомассы.

5. Замена автомобильных двигателей внутреннего сгорания на бесконтактный высокочастотный резонансный электрический транспорт.

6. Замена воздушных линий электропередач на подземные и подводные кабельные линии.

По всем указанным направлениям в ВИЭСХе проведены исследования, разработаны технологии и экспериментальные образцы, защищённые российскими патентами.

Солнечная энергетика – это самая быстрорастущая отрасль энергетики в мире с темпами роста 53% в год и объёмом производства в 2009 г. 12ГВт.

Солнечные электростанции (СЭС) с концентраторами в Калифорнии мощностью 354МВт работают с 1980 г. и замещают ежегодно 2млн. баррелей нефти (1 баррель – 159л).

Роль солнечной энергии в энергетике будущего определяется возможностями промышленного использования новых физических принципов, технологий, материалов и конструкций солнечных элементов, модулей и электростанций, разработанных в России.

Для того чтобы конкурировать с топливной энергетикой, солнечной энергетике необходимо выйти на следующие критерии:

• КПД солнечных электростанций должен быть не менее 25%.

• Срок службы солнечной электростанции должен составлять 50 лет.

• Стоимость установленного киловатта пиковой мощности солнечной электростанции не должна превышать 2000долл.

• Объём производства солнечных электростанций должен быть 100ГВт в год.

• Производство полупроводникового материала для СЭС должно превышать 1 млн. т в год при цене не более 25долл./кг.

• Круглосуточное производство электрической энергии солнечной энергосистемой.

• Материалы и технологии производства солнечных элементов и модулей должны быть экологически чистыми и безопасными.

Рассмотрим, в какой степени цели и направления развития мировой солнечной энергетики отвечают вышеуказанным критериям.

В ГНУ ВИЭСХ разработана новая технология, материалы и технологическое оборудование для сборки солнечных фотоэлектрических модулей с увеличением срока службы солнечных электростанций в два раза с 20-25 лет до 40-50 лет. Новая технология повышает КПД за счёт снижения рабочей температуры модуля и позволяет создавать фотоприёмники концентрированного излучения с большим сроком службы.

Солнечный модуль изготовлен с применением нового типа заполнителя – модифицированного полисилоксанового геля, обеспечивающего улучшенные оптические параметры, расширенный диапазон эксплуатационных температур и удвоение срока службы модуля. Температурный диапазон эксплуатации: от -60 до +60оС. Предполагаемый срок эксплуатации модуля – более 40 лет.

Годовая экономия электроэнергии на производстве модулей мощностью 1МВт не менее 70560кВт/час. Увеличение объёма производства электроэнергии при эксплуатации СЭС за счёт увеличения срока службы с 20 до 40 лет составит 20 миллионов кВт-ч для СЭС 1МВт и 200 миллиардов кВт-ч на мировой объём выпуска 10 ГВт.

Разработка отмечена дипломом Президиума РАСХН как лучшая работа в Академии за 2009 год. Получены патенты РФ, аналогов в мире нет.

Разработана новая технология и конструкция, и организовано экспериментальное производство солнечных фотоэлектрических кремниевых модулей (СФКМ) с КПД до 24% для солнечных электростанций с концентраторами, которая позволяет снизить затраты кремния на единицу мощности СЭС по сравнению с существующей технологией в 500 – 1000 раз.

Состояние разработки: выпущена партия 100 СФКМ и проведены исследования СФКМ с концентраторами. Получен патент РФ и диплом Федеральной службы по патентам РФ о включении этой разработки в 100 лучших изобретений РФ (отбор из 42 000 патентов). Аналогов в мире нет.

Исследована система солнечного теплоснабжения зданий с помощью встроенных в стены солнечных коллекторов с вакуумными стеклопакетами (СКВС). Совместно с НПО «Плазма» разработана технология изготовления вакуумных стеклопакетов и организовано их экспериментальное производство.

Сопротивление теплопередачи СКВС толщиной 7мм с вакуумным зазором 100 мкм равно 1,2м2-°С/Вт, что соответствует сопротивлению теплопередаче кирпичной стены толщиной 0,65 м. Срок службы вакуумного стеклопакета 40 лет.

Облицовка фасадов зданий солнечными коллекторами с вакуумными стеклопакетами позволяет в средней полосе РФ в течение 8 месяцев, а в Южном федеральном округе круглогодично обеспечить солнечное теплоснабжение зданий.

 

Разработана компьютерная программа и проведены расчёты тепловой энергии, полученной от СКВС на фасаде здания в отопительный период.

Использование 7мм вакуумного стеклопакета в окнах зданий снижает потери на кондиционирование на 25-30%. На технологию и конструкцию вакуумного стеклопакета и его применение получено 15 патентов РФ. Аналогов за рубежом нет, за исключением  Японии.

Современные системы передачи электрической энергии используют двух- и трёхпроводные линии, в которых электрическая энергия передаётся от генератора к приёмнику бегущими волнами тока, напряжения и электромагнитного поля. Основные потери обусловлены джоулевыми потерями на сопротивлении проводов, от протекания активного тока проводимости по замкнутому контуру от генератора к приёмнику и обратно.

Крупные энергетические компании во многих странах мира вкладывают гигантские средства и научные ресурсы в создание технологии высокотемпературной сверхпроводимости для снижения джоулевых потерь в линии.

Существует другой, вероятно, более эффективный способ снижения потерь, по крайней мере, в магистральных и межконтинентальных линиях электропередач: разработать регулируемые резонансные волноводные системы передачи электрической энергии на повышенной частоте 1-100кГц, которые не используют активный ток проводимости в замкнутой цепи. В волноводной однопроводниковой линии нет замкнутого контура, нет бегущих волн тока и напряжения, а есть стоячие (стационарные) волны реактивного ёмкостного тока и напряжения со сдвигом фаз 90°. За счёт настройки резонансных режимов, выбора частоты тока в зависимости от длины линии, можно создать в линии режим пучности напряжения и узла тока (например, для полуволновой линии). При этом, из-за отсутствия активного тока, сдвига фаз между стоячими волнами реактивного тока и напряжения 90° и наличия узла тока в линии, отпадает необходимость и потребность в создании в такой линии режима высокотемпературной проводимости, а джоулевые потери становятся незначительными, в связи с отсутствием замкнутых активных токов проводимости в линии и незначительными величинами незамкнутого ёмкостного тока вблизи узлов стационарных волн тока в линии.

Изменяется и механизм передачи электрической энергии. В обычных двух-трёхпроводных линиях при включении генератора в линии возникают бегущие волны тока, которые должны достигнуть нагрузки и вернуться к генератору. В резонансной однопроводниковой волноводной линии при наличии стационарных волн незамкнутого электрического тока электрическая энергия присутствует в любой точке линии.

Новая физика электрических процессов, связанная с использованием не активного, а реактивного тока, позволит решить три главные проблемы современной электроэнергетики:

– создание сверхдальних линий передач с низкими потерями без использования технологии сверхпроводимости;

– увеличение пропускной способности линий;

– замена воздушных линий на кабельные однопроводниковые волноводные линии и снижение сечения токонесущей жилы кабеля в 20-50 раз.

– замена воздушных линий на кабельные однопроводниковые волноводные линии и снижение сечения токонесущей жилы кабеля в 20-50 раз.

В экспериментальной резонансной однопроводниковой системе передачи электрической энергии, установленной в экспериментальном зале ВИЭСХ, мы передавали электрическую мощность 20кВт при напряжении 6,8кВ на расстоянии 6м по медному проводнику диаметром 80мкм при комнатной температуре, при этом эффективная плотность тока в проводнике составила 600А/мм2, а эффективная плотность мощности – 4МВт/мм2. Из других применений резонансной электроэнергетики, основанной на незамкнутых токах, следует выделить беспроводной офис, бесконтактный высокочастотный электротранспорт, создание местных энергетических систем с использованием возобновляемых источников энергии, соединение оффшорных морских ВЭС с береговыми подстанциями, электроснабжение потребителей на островах и в зонах вечной мерзлоты, пожаробезопасные однопроводниковые системы уличного освещения и освещения зданий, домов престарелых, музеев, больниц и пожароопасных производств.

 

Подготовлены предложения по разработке энергоэффективного гибридного трактора с беспроводной системой зарядки аккумуляторов, электрической мощностью 50-100кВт, экономией дизельного топлива 30% и снижением уровня выбросов в 5 раз.

Планируется изготовление и испытание опытного образца и организация серийного производства.

Будет выполнена разработка электрического автомобиля с беспроводной системой зарядки аккумуляторов, электрическая мощность которой 50-100кВт. Грузоподъёмность 1,5т. 100% экономия топлива. Отсутствие вредных выбросов. Увеличение эффективности использования первичной энергии в 2 раза:

– отсутствие двигателя внутреннего сгорания и топливных баков;

– отсутствие химических аккумуляторов;

– отсутствие топливных элементов, системы накопления и хранения водорода;

– неограниченная дальность пробега;

– возможность полной автоматизации вождения на автострадах.

Используется бесконтактная резонансная система электроснабжения с однопроводниковой линией электропередачи, работающей на повышенной частоте.

Планируется изготовление опытной партии, проведение испытаний и организация серийного производства.

Для сомневающихся в существовании незамкнутых электрических токов приводим высказывания двух выдающихся учёных в области электротехники и электро-энергетики.

«Исключительная трудность согласования законов электромагнетизма с существованием незамкнутых электрических токов – одна из причин среди многих, почему мы должны допустить существование токов, создаваемых изменением смещения» (Д. Максвелл).

«В 1893 г. я показал, что нет необходимости использовать два проводника для передачи электрической энергии... Передача энергии через одиночный проводник без возврата была обоснована практически» (Н.Тесла, 1927 г.).

«Эффективность передачи может быть 96 или 97 процентов, и практически нет потерь...

Когда нет приёмника, нет нигде потребления энергии» (Н. Тесла, 1917 г.).

«Мои эксперименты показали, что на поддержание электрических колебаний по всей планете потребуются несколько лошадиных сил» (Н. Тесла, 1905 г.).

 

Н. Тесла ответил и на вопрос, который часто задают нам: почему электроэнергетика не восприняла его идеи? «Мой проект сдерживался законами природы. Мир не был готов к нему. Он слишком обогнал время. Но те же самые законы восторжествуют в конце и осуществят его с великим триумфом» (Н. Тесла, 1919 г).

За 20 лет исследований российские учёные получили более 20 патентов на технологии и оборудование резонансной электроэнергетики, результаты исследований опубликованы в книге «Резонансные методы передачи и применения электрической энергии» (3-е изд., 2008 г., ГНУ ВИЭСХ, 350 стр.).

Резонансная электроэнергетика нуждается в поддержке государства для реализации пилотных и демонстрационных проектов и ждёт нового Моргана, банкира, который 100 лет назад финансировал работы Н. Тесла.

Особенно большое значение для сельского хозяйства имеет технология переработки биомассы, растительных и древесных отходов, навоза, торфа в жидкое топливо и газ посредством термохимической переработки и метаногенеза.

Энергетические установки, использующие биомассу, отходы могут дать столько же энергии, сколько все атомные станции в России, и они имеют почти нулевые выбросы диоксида углерода и серы, то есть являются экологически чистыми. Получение и использование этого топлива, а также смесевого и модифицированного топлива позволит пополнить энергобаланс сельских предприятий и регионов и в значительной мере снизить зависимость от централизованных закупок ископаемого топлива и электроэнергии.

Осуществляется разработка технологии и создание оборудования высокоскоростной термохимической переработки древесных опилок, угля, торфа и сельскохозяйственных отходов с целью получения пиролизного газа, электроэнергии и теплоты.

Производительность по сырью 1т/сутки. Выход пиролизного газа более 50% от массы сырья обеспечивает работу газопоршневой машины с электрогенератором электрической мощностью 100кВт и тепловой мощностью 100кВт.

Завершается разработка технологии и оборудования для получения смесевого композиционного дизельного топлива. Изготовлены и проведены испытания двух типов оборудования: производительностью 1-3т/ч и 0,2т/ч. Экономия дизельного топлива 30%.

Удельная теплота сгорания 10300ккал/кг, цетановое число – 51, температура застывания -36оС. Годовой экономический эффект при объёме потребления 6 млн. т – 30 млрд. руб. Снижение вредных выбросов в 2 раза. В планах изготовление опытной партии, испытания топлива на МИС, организация производства оборудования 100 комплектов в год.

Инновационная и инвестиционная деятельность является важнейшей составляющей научно-технического прогресса. Она открывает возможности практического воплощения новых идей и реализации их в инвестиционных проектах. На пути реализации инноваций и инвестиций – психологические, экономические, технологические, законодательные, информационные барьеры.

Неучтённые риски, недоверие, боязнь неудачи, ошибки в ряде случаев не позволяют последовательно довести идею до реального воплощения.

Экономические барьеры связаны, как правило, с нехваткой средств на воплощение идеи или более высокой стоимостью предлагаемой технологии или техники по сравнению с существующей на сегодняшний день, из-за недооценки ряда показателей (например, экономических преимуществ, качества, надёжности или перспектив снижения стоимости).

Технологические барьеры могут быть преодолены при разработке и освоении новых, менее затратных и более эффективных технологий, что будет способствовать снижению и экономических барьеров.

Законодательные барьеры связаны с отсутствием законодательных и нормативных актов, стимулирующих инновационную и инвестиционную деятельность. Например, в энергетике России нет нормативных актов и экономических регуляторов, обеспечивающих поставку и продажу электроэнергии в общую энергосистему малыми и независимыми производителями.

В процессе выбора и реализации инновационных предложений важнейшим является полнота и доступность информации, включающей технико-экономическое обоснование и бизнес-планы. Для преодоления информационного барьера следует сопровождать все инновационные предложения бизнес-планами с анализом рисков при их реализации для последующего издания, широкого распространения в Интернет и на конференциях.

Необходима государственная поддержка в создании благоприятных условий для реализации инвестиционных и инновационных проектов и их использования в производстве.

При реализации инновационных пилотных проектов важным является определение тех регионов, где условия реализации конкретных инноваций более благо-приятны.

 

Например, при реализации автономных энергосистем на базе возобновляемых источников энергии следует выбрать регионы с благоприятными солнечными, ветровыми или другими ресурсами, а также регионы, где тарифы на традиционное энергообеспечение – повышенные.

Для стимулирования и поддержки НИОКР и последующей инновационной деятельности следовало бы в пределах выделяемого финансирования разрешить государственным научным учреждениям оплачивать расходы  на подачу и поддержание патентов РФ, участие сотрудников в выставках и конференциях, подключение и использование Интернет, приобретение компьютерной техники, научных приборов, программного обеспечения, изготовление макетных и экспериментальных образцов, реализацию демонстрационных проектов.

Освоение инноваций  внесёт значительный вклад в экономию энергетических ресурсов. Лицензионная стоимость рассмотренных инновационных технологий оценивается в 1 млрд. рублей, инвестиционный потенциал – в 10 млрд. рублей, а возможный объём производства и экспорта продукции – в 100 млрд. рублей.

 

Выдержки из одноимённой статьи

Дмитрия Семёновича СТРЕБКОВА,                                                                                                                               академика РАСХН

 

Государственное научное учреждение

Всероссийский научно-исследовательский институт электрификации сельского

хозяйства (ГНУ ВИЭСХ)

тел.: 8 (499) 171 1920, 171 1423


ПРЕДЛОЖЕНИЕ О СОТРУДНИЧЕСТВЕ от журнала ТОЧКА ОПОРЫ

Предложение о сотрудничестве


Приглашаем вас принять участие в публикации интервью / статьи / новости о вашей компании в номерах российского делового журнала ТОЧКА ОПОРЫ.

Если вы хотите:

  • достойно представить свой бизнес;
  • сообщить о новых направлениях вашей деятельности;
  • заявить о себе как о преуспевающем игроке на рынке;
  • поделиться успехами, достижениями, опытом;
  • найти потенциальных покупателей своей продукции;

то мы будем рады вам помочь!

Закажите размещение в печатной версии журнала ТОЧКА ОПОРЫ, и ваша статья БЕСПЛАТНО появится на страницах электронной версии. А это значит, что о вашей компании узнает огромное количество интернет-пользователей и ваших потенциальных покупателей!

Также мы предлагаем:

  • Размещение баннерной рекламы на сайте;
  • Размещение вашей статьи/новости в ежедневной новостной рассылке с количеством подписчиков 17 тыс.
  • Размещение вашей новости/статьи/заметки/интервью/видеоинтервью на сайте

РЕКЛАМА В ЖУРНАЛЕ

РЕКЛАМА НА САЙТЕ

АРХИВ ЖУРНАЛА

№292 Апрель 2024
тема: тэк